Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Health Sci Rep ; 7(4): e2016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605725

ABSTRACT

Background: COVID-19 has caused severe morbidity and mortality worldwide. After the end of the dynamic zero-COVID policy in China in December, 2022, concerns regarding reinfection were raised while little was known due to the lack of surveillance data in this country. Aims: This study reviews the probability, risk factors, and severity of severe acute respiratory syndrome coronavirus 2 Omicron variant reinfection, as well as the interval between infections, risk of onward transmission by reinfected cases, and the role of booster vaccination against reinfection. Sources: References for this review were identified through searches of PubMed and Web of Science up to September 24, 2023. Results: The rate of reinfection ranges from 3.1% to 13.0%. Factors associated with a higher risk of reinfection include being female, having comorbidities, and being unvaccinated. Reinfection with the BA.4 or BA.5 variant occurs approximately 180 days after the initial infection. Reinfections are less clinically severe than primary infections, and there is evidence of lower transmissibility. The debate surrounding the effectiveness and feasibility of booster vaccinations in preventing reinfection continues. Conclusions: The reinfection rate during the Omicron epidemic is significantly higher than in previous epidemic periods. However, the symptoms and infectivity of reinfection were weaker than those of the prior infection. Medical staff and individuals at high risk of reinfection should be vigilant. The efficacy of booster vaccinations in reducing reinfection is currently under debate.

2.
J Clin Lab Anal ; 38(1-2): e25008, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235610

ABSTRACT

PURPOSE: Blood culture (BC) remains the gold standard for the diagnosis of bloodstream infections. Improving the quality of clinical BC samples, optimizing BC performance, and accelerating antimicrobial susceptibility test (AST) results are essential for the early detection of bloodstream infections and specific treatments. METHODS: We conducted a retrospective multicenter study using 450,845 BC specimens from clinical laboratories obtained from 19 teaching hospitals between 1 January 2021 and 31 December 2021. We evaluated key performance indicators (KPIs), turnaround times (TATs), and frequency distributions of processing in BC specimens. We also evaluated the AST results of clinically significant isolates for four different laboratory workflow styles. RESULTS: Across the 10 common bacterial isolates (n = 16,865) and yeast isolates (n = 1011), the overall median (interquartile range) TATs of AST results were 2.67 (2.05-3.31) and 3.73 (2.98-4.64) days, respectively. The specimen collections mainly occurred between 06:00 and 24:00, and specimen reception and loadings mainly between 08:00 and 24:00. Based on the laboratory workflows of the BCs, 16 of the 19 hospitals were divided into four groups. Time to results (TTRs) from specimen collection to the AST reports were 2.35 (1.95-3.06), 2.61 (1.98-3.32), 2.99 (2.60-3.87), and 3.25 (2.80-3.98) days for groups I, II, III, and IV, respectively. CONCLUSION: This study shows the related BC KPIs and workflows in different Chinese hospitals, suggesting that laboratory workflow optimization can play important roles in shortening time to AST reports and initiation of appropriate timely treatment.


Subject(s)
Laboratories , Sepsis , Humans , Blood Culture , Laboratories, Clinical , Time Factors , Hospitals, Teaching , Sepsis/diagnosis
3.
Microb Drug Resist ; 30(4): 153-163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38150703

ABSTRACT

Tigecycline, one of the last-resort therapeutic options for complicated infections caused by multidrug-resistant pathogens, especially carbapenem-resistant Enterobacterales and Acinetobacter in recent years. The emergence of antibiotic-resistant bacteria and antibiotic-resistant genes has threatened the effectiveness of antibiotics and public health with the excessive use of antibiotics in clinics. However, the emergence and dissemination of high-level mobile tigecycline-resistance gene tet(X) is challenging for clinical effectiveness of antimicrobial agent. This study aimed to characterize an E. coli strain T43, isolated from an inpatient in a teaching hospital in China. The E. coli T43 was resistant to almost all antimicrobials except colistin and consisted of a 4,774,080 bp chromosome and three plasmids. Plasmids pT43-1 and pT43-2 contained tigecycline-resistance gene tet(X4). Plasmid pT43-1 had a size of 152,423 bp with 51.05% GC content and harbored 151 putative open reading frames. pT43-1 was the largest plasmid in strain T43 and carried numerous resistance genes, especially tigecycline resistance gene tet(X4) and carbapenemase resistance gene blaNDM-5. The tet(X) gene was associated with IS26. Co-occurrence of numerous resistance genes in a single plasmid possibly contributed to the dissemination of these genes under antibiotics stress. It might explain the presence of clinically crucial resistance genes tet(X) and blaNDM-5 in clinics. This study suggested the applicable use of antibiotics and continued surveillance of tet(X) and blaNDM-5 in clinics are imperative.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Humans , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Inpatients , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Plasmids/genetics , China
4.
Brain Behav Immun ; 115: 209-222, 2024 01.
Article in English | MEDLINE | ID: mdl-37858739

ABSTRACT

The mechanism by which SARS-CoV-2 causes neurological post-acute sequelae of SARS-CoV-2 (neuro-PASC) remains unclear. Herein, we conducted proteomic and metabolomic analyses of cerebrospinal fluid (CSF) samples from 21 neuro-PASC patients, 45 healthy volunteers, and 26 inflammatory neurological diseases patients. Our data showed 69 differentially expressed metabolites and six differentially expressed proteins between neuro-PASC patients and healthy individuals. Elevated sphinganine and ST1A1, sphingolipid metabolism disorder, and attenuated inflammatory responses may contribute to the occurrence of neuro-PASC, whereas decreased levels of 7,8-dihydropterin and activation of steroid hormone biosynthesis may play a role in the repair process. Additionally, a biomarker cohort consisting of sphinganine, 7,8-dihydroneopterin, and ST1A1 was preliminarily demonstrated to have high value in diagnosing neuro-PASC. In summary, our study represents the first attempt to integrate the diagnostic benefits of CSF with the methodological advantages of multi-omics, thereby offering valuable insights into the pathogenesis of neuro-PASC and facilitating the work of neuroscientists in disclosing different neurological dimensions associated with COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Proteomics , Disease Progression
5.
Microb Drug Resist ; 30(1): 27-36, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150122

ABSTRACT

Background: Around the world, carbapenemase-producing Escherichia coli is becoming more prevalent. The purpose of this research was to analyze the whole plasmid sequences from YL03 isolates of the E. coli strain that produce both KPC-2 and NDM-5 carbapenemases. Materials and Methods: Whole-genome sequencing (WGS) and analysis of E. coli strain YL03, which was isolated from a wound sample, was performed by Illumina Novaseq 6000 and Pacific Biosciences Sequel (PacBio, Menlo Park, CA) sequencers. Following that, the WGS results were used to predict and analyze the YL03 genome composition and function. A complete gene sequence for YL03 with the accession number CP093551 has been uploaded to GenBank. Results: The results showed that YL03 co-carried five resistance genes, which included blaKPC-2, blaNDM-5, blaTEM-1B, blaCTX-M-14, and mdf(A). Furthermore, three resistance plasmids were found in YL03: pYL03-KPC, pYL03-NDM, and pYL03-CTX. Among them, the 53 kb-long pYL03-KPC plasmid belonging to the IncP, carried the replicase gene (repA) and the carbapenemase gene (blaKPC-2). The blaKPC-2 gene was flanked by a composite transposon-like element (Tn3-[Tn3] tnpR-ISKpn27 blaKPC--ISKpn6). Conclusions: The YL03 strain co-carried blaKPC-2 and blaNDM-5 and had a unique multidrug resistance plasmid containing blaKPC-2.


Subject(s)
Bacterial Proteins , Escherichia coli , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , DNA Transposable Elements , Escherichia coli/genetics , Genomics , Hospitals , Intensive Care Units , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Plasmids/genetics
6.
JMIR Public Health Surveill ; 9: e48107, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962934

ABSTRACT

BACKGROUND: In response to the SARS-CoV-2 epidemic, a convenient, rapid, and sensitive diagnostic method for detecting COVID-19 is crucial for patient control and timely treatment. OBJECTIVE: This study aimed to validate the detection of SARS-CoV-2 with the Pluslife SARS-CoV-2 rapid test kit developed based on a novel thermostatic amplification technique called RNase hybridization-assisted amplification. METHODS: From November 25 to December 8, 2022, patients with suspected or confirmed COVID-19, close contacts, and health care workers at high risk of exposure were recruited from 3 hospitals and 1 university. Respiratory specimens were collected for testing with the Pluslife SARS-CoV-2 rapid test kit and compared with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and a commercial antigen assay kit. Samples from 1447 cases were obtained from 3 "ready-to-test" scenarios in which samples were collected on site and tested immediately, and samples from 503 cases were obtained from a "freeze-thaw test" scenario in which samples were collected, frozen, and thawed for testing. RESULTS: Pluslife SARS-CoV-2 rapid testing of samples from the "ready-to-test" scenario was found to be accurate (overall sensitivity and specificity of 98.3% and 99.3%, respectively) and diagnostically useful (positive and negative likelihood ratios of 145.45 and 0.02, respectively). Pluslife SARS-CoV-2 rapid testing of samples from the "freeze-thaw test" scenario was also found to be accurate (overall sensitivity and specificity of 71.2% and 98.6%, respectively) and diagnostically useful (positive and negative likelihood ratios of 51.01 and 0.67, respectively). Our findings demonstrated that the time efficiency and accuracy of the results in a "ready-to-test" scenario were better. The time required from sample preparation to the seeing the result of the Pluslife SARS-CoV-2 rapid test was 10 to 38 minutes, which was substantially shorter than that of RT-qPCR (at least 90 minutes). In addition, the diagnostic efficacy of the Pluslife SARS-CoV-2 rapid test was better than that of a commercial antigen assay kit. CONCLUSIONS: The developed RNase hybridization-assisted amplification assay provided rapid, sensitive, and convenient detection of SARS-CoV-2 infection and may be useful for enhanced detection of COVID-19 in homes, high-risk industries, and hospitals.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2 , COVID-19/diagnosis , Prospective Studies , Ribonucleases
7.
Lipids Health Dis ; 22(1): 195, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964277

ABSTRACT

BACKGROUND: To validate the causal relationship between type 2 diabetes mellitus (T2DM) and intervertebral disc degeneration (IVDD) and to identify and quantify the role of triglycerides (TGs) as potential mediators. METHODS: A two-sample Mendelian randomization (MR) analyses of T2DM (61,714 cases and 1178 controls) and IVDD (20,001 cases and 164,682 controls) was performed using genome-wide association studies (GWAS). Moreover, two-step MR was employed to quantify the proportionate impact of TG-mediated T2DM on IVDD. RESULTS: MR analysis showed that T2DM increased IVDD risk (OR: 1.0466, 95% CI 1.0049-1.0899, P = 0.0278). Reverse MR analyses demonstrated that IVDD does not affect T2DM risk (P = 0.1393). The proportion of T2DM mediated through TG was 11.4% (95% CI 5.5%-17.4%). CONCLUSION: This work further validates the causality between T2DM and IVDD, with a part of the effect mediated by TG, but the greatest impacts of T2DM on IVDD remain unknown. Further studies are needed to identify other potential mediators.


Subject(s)
Diabetes Mellitus, Type 2 , Intervertebral Disc Degeneration , Humans , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Intervertebral Disc Degeneration/genetics , Mendelian Randomization Analysis , Triglycerides
8.
Front Oncol ; 13: 1259508, 2023.
Article in English | MEDLINE | ID: mdl-37829332

ABSTRACT

Background: Spinal meningioma is a common intraspinal tumor, which mainly occurs in the thoracic spine. Ossified meningioma (OSM) is an extremely rare histological variant. Our article reports a rare patient with dorsal complete OSM and reviews this subject. Case presentation: A 68-year-old woman presented with a one-year history of progressive weakness in both lower limbs with gait disturbance. Physical examination revealed hypoesthesia with a sensory level below T10. Babinski and pathological signs on both sides were weakly positive. Magnetic resonance imaging (MRI) showed a mass at the T10 to T11 level causing severe compression of the spinal cord. Computed tomography (CT) showed complete ossification of the mass. 18F-Fluoro-deoxy-glucose positron emission tomography CT (18F-FDG PET/CT) scan combined with MRI revealed that the mass was an intradural extramedullary high-density ossified nodule. The patient underwent a gross total resection of the mass and pathologic examination indicated that the mass was a meningioma with diffused psammomatous bodies. Conclusion: We identified a rare case of dorsal complete OSM occurring in a 68-year-old woman. After complete surgical resection, although there were complications such as cerebral fluid leakage and fever, the patient finally recovered with a satisfactory result.

9.
Antibiotics (Basel) ; 12(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37760759

ABSTRACT

Klebsiella michiganensis is a recently emerging human pathogen causing nosocomial infections. This study aimed to characterize the complete genome sequence of a clinical Klebsiella michiganensis strain KMIB106 which exhibited extensive drug-resistance. The whole genome of the strain was sequenced using PacBio RS III systems and Illumina Nextseq 500. Annotation, transposable elements and resistance gene identification were analyzed by RAST, prokka and Plasmid Finder, respectively. According to the results, KMIB106 was resistant to multiple antimicrobials, including carbapenems, but it remained susceptible to aztreonam. The genome of KMIB106 consisted of a single chromosome and three predicted plasmids. Importantly, a novel KPC plasmid pB106-1 was found to carry the array of resistance genes in a highly different order in its variable regions, including mphA, msrE, mphE, ARR-3, addA16, sul1, dfrA27, tetD and fosA3. Plasmid pB106-2 is a typical IncFII plasmid with no resistant gene. Plasmid pB106-IMP consists of the IncN and IncX3 backbones, and two resistance genes, blaIMP-4 and blaSHV-12, were identified. Our study for the first time reported an extensively drug-resistant Klebsiella michiganensis strain recovered from a child with a respiratory infection in Southern China, which carries three mega plasmids, with pB106-1 firstly identified to carry an array of resistance genes in a distinctive order, and pB106-IMP identified as a novel IncN-IncX3 cointegrate plasmid harboring two resistance genes blaIMP-4 and blaSHV-12.

10.
Infect Drug Resist ; 16: 5485-5500, 2023.
Article in English | MEDLINE | ID: mdl-37638072

ABSTRACT

Background: Antibiotic resistance represents a serious global health challenge, particularly with the emergence of strains resistant to last-resort antibiotics such as tigecycline, polymyxin B, and vancomycin. Urgent measures are required to alleviate this situation. To facilitate the judicious use of antibiotics, rapid and precise antimicrobial susceptibility testing (AST) is essential. Heavy water (deuterium oxide, D2O)-labeled Raman spectroscopy has emerged as a promising time-saving tool for microbiological testing. Methods: Deuterium incorporation and experimental conditions were examined to develop and apply a Raman-based AST method to evaluate the efficacy of last-resort antibiotics, including tigecycline, polymyxin B, and vancomycin, against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus faecium. Essential agreement and categorical agreement were used to assess the metabolism inactivation concentration based on Raman spectroscopy (R-MIC)-a new metric developed in this study-and minimum inhibitory concentration (MIC) determined via the traditional microdilution broth method. Spearman's rank correlation coefficient was employed to measure the association between R-MIC and MIC values. Results: The Raman-based AST method achieved a 100% categorical agreement (92/92) with the traditional microdilution broth method within five hours, while the traditional method required approximately 24 h. The R-MIC values shared 68.5% (63/92) consistency with the MIC values. In addition, the R-MIC and MIC values were highly correlated (Spearman's r=0.96), resulting in an essential agreement of 100%. Conclusion: Our optimized experimental method and conditions indicate that Raman-based AST holds great promise as a solution to overcome the time-consuming challenges of traditional AST methods.

11.
PLoS One ; 18(6): e0286647, 2023.
Article in English | MEDLINE | ID: mdl-37267294

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IDD) is a progressive chronic condition that commonly causes low back pain. Cancer is among the primary reasons for deaths worldwide. Our purpose was to identify the characteristic genes of IDD and explore the potential association between IDD and cancer. METHODS: Immune cell infiltration and differentially expressed analysis were conducted utilizing data from the GSE124272 database. Enrichment analysis of differentially expressed genes (DEGs) was performed to explore the possible mechanisms underlying IDD development. Moreover, weighted gene correlation network analysis (WGCNA) was applied to select IDD-related hub genes. The immune-related key genes were determined by intersecting DEGs, IDD-related hub genes, and immune genes. Subsequently, machine learning models based on these genes were built to identify and verify the characteristic genes. RNA sequencing and clinical data of 33 carcinoma categories were obtained from the Cancer Genome Atlas (TCGA). The association between NAIP expression and prognosis was calculated using the Kaplan-Meier analysis. To gain a deeper understanding of the impact of NAIP in tumor immunotherapy, the association between NAIP and immune infiltration and two immunotherapeutic biomarkers were explored. Ultimately, the association between NAIP and immunotherapeutic response was investigated utilizing two independent cohorts. RESULTS: NAIP was identified as an immune-related characteristic gene between IDD and normal intervertebral disc tissue. In certain carcinoma categories, NAIP expression levels were elevated (4/33) and significantly correlated to the respective tumor stage (4/21). Survival analysis revealed that the expression levels of NAIP have prognostic significance in different cancer types. Generally, NAIP presented a strong association with immune cell infiltration and modulators. NAIP may influence immunotherapy effects through tumor mutational burden and microsatellite instability. No remarkable association between NAIP and immunotherapy response was found in either cohort. CONCLUSION: Our study is the first to identify NAIP as an immune-related characteristic gene. Pan-cancer analysis revealed that NAIP could serve as a novel clinical prognostic marker and therapeutic target for a variety of carcinoma categories, reducing the risk of IDD in tumor patients.


Subject(s)
Carcinoma , Intervertebral Disc Degeneration , Humans , Intervertebral Disc Degeneration/genetics , Chromosome Mapping , Databases, Factual , Immunity, Innate/genetics , Neuronal Apoptosis-Inhibitory Protein
12.
Front Microbiol ; 14: 1117017, 2023.
Article in English | MEDLINE | ID: mdl-37125174

ABSTRACT

The ever-increasing prevalence of infections produced by multidrug-resistant or extensively drug-resistant Pseudomonas aeruginosa is commonly linked to a limited number of aptly-named epidemical 'high-risk clones' that are widespread among and within hospitals worldwide. The emergence of new potential high-risk clone strains in hospitals highlights the need to better and further understand the underlying genetic mechanisms for their emergence and success. P. aeruginosa related high-risk clones have been sporadically found in China, their genome sequences have rarely been described. Therefore, the large-scale sequencing of multidrug-resistance high-risk clone strains will help us to understand the emergence and transmission of antibiotic resistances in P. aeruginosa high-risk clones. In this study, 212 P. aeruginosa strains were isolated from 2 tertiary hospitals within 3 years (2018-2020) in Guangdong Province, China. Whole-genome sequencing, multi-locus sequence typing (MLST) and antimicrobial susceptibility testing were applied to analyze the genomic epidemiology of P. aeruginosa in this region. We found that up to 130 (61.32%) of the isolates were shown to be multidrug resistant, and 196 (92.45%) isolates were Carbapenem-Resistant Pseudomonas aeruginosa. MLST analysis demonstrated high diversity of sequence types, and 18 reported international high-risk clones were identified. Furthermore, we discovered the co-presence of exoU and exoS genes in 5 collected strains. This study enhances insight into the regional research of molecular epidemiology and antimicrobial resistance of P. aeruginosa in China. The high diversity of clone types and regional genome characteristics can serve as a theoretical reference for public health policies and help guide measures for the prevention and control of P. aeruginosa resistance.

13.
Antibiotics (Basel) ; 12(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37106996

ABSTRACT

This topical collection, entitled "Antimicrobial resistance and anti-biofilms", was first launched in the journal Antibiotics in November of 2020 [...].

14.
Microbiol Spectr ; 11(3): e0426122, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37078855

ABSTRACT

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a bacterial pathogen that may cause serious drug-resistant infections that are potentially fatal. To investigate the genetic characteristics of these organisms, we tested 416 P. aeruginosa strains recovered from 12 types of clinical samples collected in 29 different hospital wards in 10 hospitals in Guangdong Province, China, from 2017 to 2020. These strains were found to belong to 149 known sequence types (STs) and 72 novel STs, indicating that transmission of these strains involved multiple routes. A high rate of resistance to imipenem (89.4%) and meropenem (79.4%) and a high prevalence of pathogenic serotypes (76.4%) were observed among these strains. Six STs of global high-risk clones (HiRiCs) and a novel HiRiC strains, ST1971, which exhibited extensive drug resistance, were identified. Importantly, ST1971 HiRiC, which was unique in China, also exhibited high virulence, which alarmed the further surveillance on this highly virulent and highly resistant clone. Inactivation of the oprD gene and overexpression of efflux systems were found to be mainly responsible for carbapenem resistance in these strains; carriage of metallo-ß-lactamase (MBL)-encoding genes was less common. Interestingly, frameshift mutations (49.0%) and introduction of a stop codon (22.4%) into the oprD genes were the major mechanisms of imipenem resistance. On the other hand, expression of the MexAB-OprM efflux pump and MBL-encoding genes were mechanisms of resistance in >70% of meropenem-resistant strains. The findings presented here provide insights into the development of effective strategies for control of worldwide dissemination of CRPA. IMPORTANCE Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a major concern in clinical settings worldwide, yet few genetic and epidemiological studies on CRPA strains have been performed in China. Here, we sequence and analyze the genomes of 416 P. aeruginosa strains from hospitals in China to elucidate the genetic, phenotypic, and transmission characteristics of CRPA strains and to identify the molecular signatures responsible for the observed increase in the prevalence of CRPA infections in China. These findings may provide new insight into the development of effective strategies for worldwide control of CRPA and minimize the occurrence of untreatable infections in clinical settings.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Humans , Meropenem/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Carbapenems/pharmacology , Carbapenems/metabolism , Pseudomonas aeruginosa , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Imipenem/pharmacology , Imipenem/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Microbial Sensitivity Tests
15.
Antibiotics (Basel) ; 12(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36830279

ABSTRACT

As the prevalence of Staphylococcus aureus infections is of worldwide concern, phenotype and genotype in prevalent MRSA strains require longitudinal investigation. In this study, the antibiotic resistance, virulence gene acquisition, and molecular type were determined on a large scale of nosocomial S. aureus strains in Southern China during 2009-2015. Bacterial identification and antimicrobial susceptibility to 10 antibiotics were tested by Vitek-2. Virulence genes encoding staphylococcal enterotoxins (SEA, SEB, SEC, SED, and SEE), exfoliative toxins (ETA and ETB), Panton-Valentine leukocidin (PVL), and toxic shock syndrome toxin (TSST) were detected by PCR, with SCCmec typing also conducted by multiplex PCR strategy. Genotypes were discriminated by MLST and spaA typing. MLST was performed by amplification of the internal region of seven housekeeping genes. PCR amplification targeting the spa gene was performed for spa typing. No resistance to vancomycin, linezolid, or quinupristin and increase in the resistance to trimethoprim/sulfamethoxazole (55.5%) were identified. A total of nine SCCmec types and subtypes, thirteen STs clustered into thirteen spa types were identified, with ST239-SCCmec III-t037 presenting the predominant methicillin-resistant S. aureus (MRSA) clone. Typically, SCCmec type IX and ST546 were emergent types in China. Isolates positive for both pvl and tsst genes and for both eta and etb genes were also identified. Important findings in this study include: firstly, we have provided comprehensive knowledge on the molecular epidemiology of MRSA in Southern China which fills the gap since 2006 or 2010 from previous studies. Secondly, we have presented the correlation between virulence factors (four major groups) and genotypes (SCCmec, ST and spa types). Thirdly, we have shown evidence for earliest emergence of type I SCCmec from 2012, type VI from 2009 and type XI from 2012 in MRSA from Southern China.

16.
Antibiotics (Basel) ; 11(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36290034

ABSTRACT

Despite its commonly overlooked role as a commensal, Ralstonia mannitolilytica becomes an emerging global opportunistic human pathogen and a causative agent of various infections and diseases. In respiratory illnesses, including cystic fibrosis and chronic obstructive pulmonary disease (COPD), R. mannitolilytica is also identified presumably as colonizer. In this study, one distinctive clone of R. mannitolilytica was firstly identified as colonizer for the first 20 days during hospitalization of a patient. It was then identified as a causative agent for catheter-related bloodstream infection with negative identification after effective treatment, verifying its transition from commensal to pathogen. In conclusion, we provide convincing evidence that during hospitalization of a patient, R. mannitolilytica transitioned from commensal to pathogen in the respiratory tract leading to catheter-related bloodstream infection (CRBSI).

17.
J Proteomics ; 268: 104715, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36058541

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an urgent threat to human health. Major outer membrane proteins (OMPs) porin mutation is one important resistance mechanism of CRKP, and may also affect the inhibition activity of ß-lactam and ß-lactamase inhibitor combinations. The ertapenem-resistant K. pneumoniae strain 2018B120 with major porin mutations was isolated from a clinical patient. Genomic and time-series proteomic analyses were conducted to retrieve the ertapenem-challenged response of 2018B120. The abundance changing of proteins from PTS systems,  ABC transporters, the autoinducer 2 (AI-2) quorum sensing system, and antioxidant systems can be observed. Overexpression of alternative porins was also noticed to balance major porins' defection. These findings added a detailed regulation network in bacterial resistance mechanisms and gave new insights into bypass adaptation mechanisms the porin deficient bacteria adopted under carbapenem antibiotics pressure. SIGNIFICANCE: Outer membrane porins deficiency is an important mechanism of carbapenem resistance in K. pneumoniae. Comprehensive genomic and proteomic profiling of an ertapenem-resistant K. pneumoniae strain 2018B120 gives a detailed systematic regulation network in bacterial resistance mechanisms. Overexpression of alternative porins to balance major porins' defection was noticed, giving new insights into bypass adaptation mechanisms of porin deficient bacteria.


Subject(s)
Klebsiella pneumoniae , Porins , beta-Lactam Resistance , ATP-Binding Cassette Transporters/metabolism , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Bacterial Proteins/metabolism , Carbapenems/metabolism , Carbapenems/pharmacology , Ertapenem/metabolism , Ertapenem/pharmacology , Humans , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests , Porins/genetics , Porins/metabolism , Proteomics/methods , beta-Lactam Resistance/genetics , beta-Lactamase Inhibitors/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , beta-Lactams/metabolism , beta-Lactams/pharmacology
18.
Antibiotics (Basel) ; 11(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35884123

ABSTRACT

The spread of multidrug-resistant enterobacteria strains has posed a significant concern in public health, especially when the strain harbors metallo-beta-lactamase (MBL)-encoding and mobilized colistin resistance (mcr) genes as such genetic components potentially mediate multidrug resistance. Here we report an IncHI2/2A plasmid carrying blaIMP-26 and mcr-9 in multidrug-resistant Serratia marcescens human isolates YL4. Antimicrobial susceptibility testing was performed by the broth microdilution method. According to the results, S. marcescens YL4 was resistant to several antimicrobials, including ß-lactams, fluorquinolones, sulfanilamide, glycylcycline, and aminoglycosides, except for amikacin. To investigate the plasmid further, we conducted whole-genome sequencing and sequence analysis. As shown, S. marcescens YL4 possessed a circular chromosome with 5,171,477 bp length and two plasmids, pYL4.1 (321,744 bp) and pYL4.2 (46,771 bp). Importantly, sharing high similarity with plasmids pZHZJ1 and pIMP-26, pYL4.1 has an IncHI2/2A backbone holding a variable region containing blaIMP-26, mcr-9, and two copies of blaTEM-1B. After comprehensively comparing relevant plasmids, we proposed an evolutionary pathway originating from ancestor pZHZJ1. Then, via an acquisition of the mcr-9 element and a few recombination events, this plasmid eventually evolved into pYL4.1 and pIMP-26 through two different pathways. In addition, the phage-like plasmid pYL4.2 also carried a blaTEM-1B gene. Remarkably, this study first identified a multidrug-resistant S. marcescens strain co-harboring blaIMP-26 and mcr-9 on a megaplasmid pYL4.1 and also included a proposed evolutionary pathway of epidemic megaplasmids carrying blaIMP-26.

19.
Microb Drug Resist ; 28(6): 698-709, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35639427

ABSTRACT

Infection caused by carbapenem-resistant Enterobacterales (CRE) is a global public health problem. We performed whole-genome sequencing to investigate the molecular epidemiological characteristics of local CRE infections and understand the prevalence of hypervirulent carbapenem-resistant Klebsiella pneumoniae (CRKP). Analysis of multiLocus sequence typing (MLST), antibiotic resistance genes, plasmid replicons, virulence genes, and the genetic environment was also performed. Klebsiella pneumoniae (89, 60.95%) was the most common CRE species, primarily prevalent in the intensive care unit (36, 40.45%). Most CRE strains showed a high resistance rate to multiple antibiotics, especially cephalosporins and carbapenems. However, most of these isolates were susceptible to tigecycline (81.7%). Notably, the predominant sequence type (ST) of CRKP isolates was ST11 (80.90%, 72/89), with 93.05% as Klebsiella pneumoniae carbapenemase (KPC)-ST11. In Escherichia coli isolates, ST410 (21.43%, 6/28) was the predominant type, with approximately half carrying blaNDM-5, and importantly, the ST167 carbapenem-resistant Escherichia coli (CRECO) harbors both New Delhi metallo-ß-lactamase (NDM)-5 and KPC-2. In Enterobacter cloacae isolates, three cases of ST88 were carrying the blaNDM-1 gene, and the ST594 carbapenem-resistant Enterobacter cloacae (CRECC) carrying NDM-1 and KPC-2 has also been identified. In addition, we found three novel STs, ST5386-ST5388. The IncFII (pHN7A8) (98.41%, 62/63) was the most common plasmid replicon type in KPC-2-producing CRKP strains, and the predominant plasmid ST of IncF was [f33:A-:B-] (n = 73). Two CRKP isolates were found to carry 4 virulence genes (iutA, iroB, rmpA, and rmpA2). As concluded, among CRKP strains, ST11 was the predominant ST with blaKPC-2, and a large proportion of CRKP strains co-harbor blaKPC-2, blaSHV, blaCTX-M, blaTEB-1B, and fosA. The predominant carbapenemase genes carried by CRECO and CRECC were blaNDM-1 and blaCTX-M, respectively.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , China/epidemiology , Enterobacter cloacae/genetics , Escherichia coli/genetics , Hospitals, Teaching , Humans , Klebsiella Infections/drug therapy , Klebsiella pneumoniae , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Virulence/genetics
20.
Front Microbiol ; 13: 862776, 2022.
Article in English | MEDLINE | ID: mdl-35432229

ABSTRACT

Laribacter hongkongensis is a new emerging foodborne pathogen that causes community-acquired gastroenteritis and traveler's diarrhea. However, the genetic features of L. hongkongensis have not yet been properly understood. A total of 45 aquatic animal-associated L. hongkongensis strains isolated from intestinal specimens of frogs and grass carps were subjected to whole-genome sequencing (WGS), along with the genome data of 4 reported human clinical strains, the analysis of virulence genes, carbohydrate-active enzymes, and antimicrobial resistance (AMR) determinants were carried out for comprehensively understanding of this new foodborne pathogen. Human clinical strains were genetically more related to some strains from frogs inferred from phylogenetic trees. The distribution of virulence genes and carbohydrate-active enzymes exhibited different patterns among strains of different sources, reflecting their adaption to different host environments and indicating different potentials to infect humans. Thirty-two AMR genes were detected, susceptibility to 18 clinical used antibiotics including aminoglycoside, chloramphenicol, trimethoprim, and sulfa was checked to evaluate the availability of clinical medicines. Resistance to Rifampicin, Cefazolin, ceftazidime, Ampicillin, and ceftriaxone is prevalent in most strains, resistance to tetracycline, trimethoprim-sulfamethoxazole, ciprofloxacin, and levofloxacin are aggregated in nearly half of frog-derived strains, suggesting that drug resistance of frog-derived strains is more serious, and clinical treatment for L. hongkongensis infection should be more cautious.

SELECTION OF CITATIONS
SEARCH DETAIL
...